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The present study analyzes the natural vibration of non homogeneous visco elastic skew
plate (parallelogram plate) with non uniform thickness under temperature field. Here
non homogeneity in the plate’s material arises due to circular variation in Poisson’s ratio.
Also the circular variation in thickness causes non uniformity in the shape of the plate.
Bi linear temperature variation on the plate along both the axes is being viewed. The
equation of motion related to frequency modes are solved by Rayleigh Ritz method. The
findings of the present analysis are presented with the help of tables.
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1. Introduction

Vibration is the periodicity of oscillation through an equilibrium point. The natural
frequency is the frequency at which system tends to oscillate when there is no
external force. The vibration phenomena is undesirable because its waste energy
and efficiency of the system. Therefore, scientists and researchers are keen to study
the vibration and how to optimize (minimize) the vibration. A good and quite
significant work has been provided.

Leissa [1] studied plate vibration using classical plate theory. Timoshenko and
Goodier [2] provided theory of elasticity (engineering problems) in his excellent
book. Yamada and Irie [3] provided a review of large number of papers (approx-
imately 200) on the vibration of plate. Mackerle [4] studied vibration analysis of
beams, plates and shells using finite element method. Parametric study on thick
plate vibration using FSDT has been studied by Kalita and Haldar [5]. Gupta and
Khanna [6] discussed the natural vibration of visco-elastic rectangular plate with
linearly varying thickness variation in both directions. Sharma et. al [7, 8, 9] pro-
vided analysis of natural vibration of non homogeneous rectangular plate (isotropic
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and orthotropic) and square plate under thermal gradient. The theoretical study
of vibration of non homogeneous skew plate (parallelogram plate) with thickness
variation (exponential and sinusoidal variation) under temperature field has been
given by Khanna and Kaur [10, 11]. Ansari [12] studied forced response of po-
lar orthotropic tapered circular plates resting on elastic foundation. Tariverdilo
et. al [13] discussed asymmetric free vibration of circular plate in contact with
incompressible fluid. Zhou and Zheng [14] applied moving least square ritz method
(numerical method) to study vibration of skew plates. The effect of structural pa-
rameter on vibration of non homogeneous visco elastic rectangular plate has been
studied by Khanna and Kaur [15]. Gupta and Sharma [16] studied free vibration of
non-homogeneous trapezoidal plates with variable thickness under thermal gradient.

The main aim of the present analysis is to optimize the vibration frequency by
taking appropriate variation in plate’s parameter. Here we take circular variation
(new aspect) in thickness and in Poisson’s ratio. Here we also calculate the effect of
other plate’s parameters to vibrational frequency. The results of the present paper
are also compared with published results of [10] and [11].

2. Differential equation of motion

The differential equation of motion and time function for visco elastic plate with
thickness variation is given by [6]: D1 (Φ, xxxx + 2Φ, xxyy +Φ,yyyy) + 2D1,x (Φ,xxx +Φ,xyy)

+2D1,y (Φ,yyy +Φ,yxx) +D1,xx (Φ,xx + ν Φ,yy)
+D1,yy (Φ,yy + ν Φ,xx) + 2 (1− ν)D1 , xyΦ, xy

− ρk2gΦ = 0 (1)

T̈ + k2D̃T = 0 (2)

Here comma followed by suffix is known as partial derivative of Φ with respect
to independent variable and double dot represent the second derivative with respect

to t. Also D1 = Y g3

12(1−ν2) is called flexural rigidity of the plate.

Now the expression for kinetic energy Ts and strain energy Vs is given by [7]:

Ts =
1

2
k2ρ

∫ ∫
gΦ2dy dx (3)

Vs =
1

2

∫ ∫
D1

{
(Φ, xx)

2
+ (Φ,yy)

2
+ 2ν Φ, xxΦ, yy + 2 (1− ν) (Φ, xy)

2
}
dy dx (4)

A non uniform and non homogeneous visco elastic parallelogram plate having
skew angle θis shown in Fig. 1.

The skew coordinates of the plates are:

x = ζ + ψ sin θ, y = ψ cos θ (5)

The boundary conditions of the plate in skew coordinates are:

ζ = 0 ζ = a and ψ = 0 ψ = b (6)
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Figure 1 Parallelogram plate with skew angle θ

Using (5), (3) and (4) becomes:

Ts =
1

2
k2ρ cos θ

∫ b

0

∫ a

0

gΦ2dζ dψ (7)

Vs =
1

2 cos3 θ

∫ b

0

∫ a

0

D1


(Φ ,ζζ)

2 − 4 sin θ (Φ ,ζζ) (Φ ,ζψ)
+2
(
sin2 θ + ν cos2 θ

)
(Φ ,ζζ) (Φ ,ψψ)

+2
(
1 + sin2 θ − ν cos2 θ

)
(Φ ,ζψ)

2

−4 sin θ (Φ ,ζψ) (Φ ,ψψ) + (Φ ,ψψ)
2

 dζdψ (8)

2.1. Assumptions

Due to the wide range and general scope of vibrations, we require little limitations
in the form of assumptions in this present study.

1. The thickness of the plate is assumed to be circular in one dimension as shown
in Fig. 2.

g = g0

[
1 + β

(
1−

√
1− ζ2

a2

)]
(9)

where β, (0 ≤ β ≤ 1) is known as tapering parameter. Thickness of the plate
become constant i.e., g = g0 at ζ = 0
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Figure 2 Parallelogram plate with circular variation in ζ direction

2. We consider plate’s material to be non homogeneous. Therefore, either density
or Poisson’s ratio varies. Here we keep density of the plate is constant and
Poisson’s ratio varies circularly in one dimension as

ν = ν0

[
1−m

(
1−

√
1− ζ2

a2

)]
(10)

where m, (0 ≤ m ≤ 1)is known non homogeneity constant. Poisson’s ratio
become constant i.e., ν = ν0at ζ = 0.

3. The temperature variation on the plate is considered to be bi linear i.e., linear
in ζdirection and linear in ψdirection as:

τ = τ0

(
1− ζ

a

)(
1− ψ

b

)
(11)

where τ and τ0 denotes the temperature excess above the reference tempera-
ture on the plate at any point and at the origin respectively. The temperature
dependence modulus of elasticity for engineering structures is given by:

Y = Y0 (1− γτ) (12)

where Y0 is the Young’s modulus at mentioned temperature (i.e., τ = 0 ) and
γ is called slope of variation.

Using (11), (12) becomes:

Y = Y0

[
1− α

(
1− ζ

a

)(
1− ψ

b

)]
(13)

where α, (0 ≤ α < 1)is called temperature gradient, which is the product of
temperature at origin and slope of variation i.e., α = γτ0.
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Using (9), (10) and (13), flexural rigidity of the plate become:

D1 =

Y0g
3
0

[
1− α

(
1− ζ

a

)(
1− ψ

b

)] [
1 + β

(
1−

√
1− ζ2

a2

)]3
12

(
1− ν20

[
1−m

(
1−

√
1− ζ2

a2

)]2) (14)

Using (9), (10) and (14), (7) and (8) becomes:

Ts =
1

2
k2ρg0

∫ b

0

∫ a

0

(1 + β Λ) Φ2dζ dψ (15)

Vs =
Y0g

3
0

24 cos4 θ

∫ b

0

∫ a

0



[1−α(1− ζ
a )(1−

ψ
b )](1+β Λ)3

(1−ν2
0 (1−mΛ)2)

(Φ ,ζζ)
2 − 4

(
a
b

)
sin θ (Φ ,ζζ) (Φ ,ζψ)

+2(ab )(sin
2 θ

+ν0t(1−mΛ) cos2 θ)t(Φ ,ζζ)(Φ ,ψψ)
+2(ab )

2(1 + sin2 θ
−ν0(1−mΛ) cos2 θ)(Φ ,ζψ)

2

−4
(
a
b

)3
sin θ (Φ ,ζψ)(Φ ,ψψ)

+(ab )
4 (Φ ,ψψ)

2




dζdψ

(16)
where:

Λ =

(
1−

√
1− ζ2

a2

)

4. In the present scenario, we are computing frequency modes on clamped (along
all the four edges) boundary condition, therefore we have:

Φ = Φ , ζ = 0 at ζ = 0, a
Φ = Φ , ψ = 0 at ψ = 0, b

(17)

Therefore, two term deflection (i.e., maximum displacement) which satisfy (17)
could be:

Φ (ζ, ψ) =

 Ω1

(
ζ
a

)2 (
ψ
b

)2 (
1− ζ

a

)2 (
1− ψ

b

)2
+Ω2

(
ζ
a

)3 (
ψ
b

)3 (
1− ζ

a

)3 (
1− ψ

b

)3
 (18)

where Ω1 and Ω2 are arbitrary constants.

3. Solution for frequency equation and frequency modes

We are using Rayleigh Ritz method (i.e., maximum kinetic energy Tsmust equal
to maximum strain energyVs) to solve frequency equation and frequency modes.
Therefore, we have:

δ (Vs − Ts) = 0 (19)
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Using (15) and (16) in (19), we get:

δ
(
V ∗
s − λ2T ∗

s

)
= 0 (20)

where:

T ∗
s =

∫ b

0

∫ a

0

(1 + β Λ) Φ2dζ dψ (21)

V ∗
s =

1

cos4 θ

∫ b

0

∫ a

0



[1−α(1− ζ
a )(1−

ψ
b )](1+β Λ)3

(1−ν20 (1−mΛ)2)

(Φ ,ζζ)
2 − 4

(
a
b

)
sin θ (Φ ,ζζ) (Φ ,ζψ)

+2(a
b
)(sin2 θ

+ν0t(1−mΛ) cos2 θ)t(Φ ,ζζ)(Φ ,ψψ)
+2(a

b
)2(1 + sin2 θ

−ν0(1−mΛ) cos2 θ)(Φ ,ζψ)
2

−4
(
a
b

)3
sin θ (Φ ,ζψ)(Φ ,ψψ)

+(a
b
)4 (Φ ,ψψ)

2




dζdψ (22)

and λ2 = 12ρk2a4/Y0g
2
0 is known as frequency parameter.

(20) consists of two unknowns constants because of substitution of (18). These
constants can be determined as follows:

∂

∂Ωn

(
V ∗
s − λ2T ∗

s

)
n = 1, 2 (23)

After simplifying (23), we get homogeneous system of equation:[
d11 d12
d21 d22

] [
Ω1

Ω2

]
=

[
0
0

]
(24)

where d11, d12 = d21 and d22 involve parametric constant and frequency parameter.
To get non trivial solution the determinant of the coefficient matrix of (24) must
be zero. Therefore, we have ∣∣∣∣ d11 d12

d21 d22

∣∣∣∣ = 0, (25)

From (25), we get a quadratic equation (i.e., frequency equation) from which we
get two roots (i.e., frequency modes) λ1 (first mode) and λ2 (second mode).

4. Results and discussion

To analyze the behavior of frequency modes, the first two modes of vibration of
non homogeneous parallelogram plate corresponding to different values of plate’s
parameters (i.e., taper constant β, non homogeneity constant m, thermal gradient
α and skew angle θ) have been computed. The value of ν0 is taken 0.345. All the
results are displayed with the help of tables.

Table 1 provides frequency modes corresponding to thickness variation in the
plate for fixed value of skew angle θ = 300 and aspect ratio a/b = 1.5 and for three
different values of non homogeneity constant m = 0, 0.4, 0.8 and thermal gradient
α = 0, 0.4, 0.8. From table 1, one can easily get that frequency mode increases
for all the three values of non homogeneity constant and thermal gradient, when
tapering parameter increases from 0 to 1. The rate of increment is less due to circular
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variation in thickness. When the combined value of non homogeneity constant m
and thermal gradient α on the plate varies from 0 to 0.8, frequency mode decreases.

Table 2 displays vibrational frequency corresponding to non homogeneity in the
plate’s material for fixed value of skew angle θ = 300 and aspect ratio a/b = 1.5
and for three different values of tapering parameter β = 0, 0.4, 0.8 and thermal
gradient α = 0, 0.4, 0.8. From Tab. 2, we conclude that when non homogeneity in
the plate’s material increases from 0 to 1, vibrational frequency decreases for all the
above said three values. The rate of decrement is very less due to circular variation
in density. When combined values of tapering parameter β and thermal gradient α
on the plate increases from 0 to 0.8, frequency mode increases.

Table 1 Thickness (tapering parameter β) variation in plate vs vibrational frequency (λ) for
θ = 300 and a/b = 1.5

β m = α = 0 m = α = 0.4 m = α = 0.8
λ1 λ2 λ1 λ2 λ1 λ2

0.0 78.77 313.60 74.25 295.65 69.62 277.26
0.2 81.38 322.95 76.78 304.64 72.08 285.92
0.4 84.11 322.70 79.42 314.00 74.65 294.96
0.6 86.95 342.82 82.16 323.73 77.31 304.33
0.8 89.88 353.28 85.00 333.78 80.07 314.03
1.0 92.90 364.07 87.93 344.15 82.91 324.02

Table 2 Non homogeneity (m) variation in plate’s material vs vibrational frequency (λ) for θ = 300

and a/b = 1.5

m β = α = 0.0 β = α= 0.4 β = α = 0.8
λ1 λ2 λ1 λ2 λ1 λ2

0.0 78.77 313.60 80.06 316.59 81.33 319.27
0.2 78.47 312.39 79.73 315.25 80.97 317.80
0.4 78.19 311.25 79.42 314.00 80.64 316.44
0.6 77.92 310.18 79.14 312.84 80.34 315.19
0.8 77.67 309.17 78.47 311.76 80.07 314.03
1.0 77.44 308.23 78.63 310.75 79.82 312.96

Table 3 contains the frequency modes corresponding to temperature variation
on the plate for fixed value of skew angle θ = 300 and aspect ratio a/b = 1.5 and for
three different values of non homogeneity constant m = 0, 0.4, 0.8 and thickness
parameter β = 0, 0.4, 0.8. From Tab. 3, we enlighten the fact that frequency
mode decreases when temperature gradient on the plate increases from 0 to 0.8 for
all the three mentioned values. The frequency mode increases when the combined
value of non homogeneity constantm and tapering parameter β on the plate varies
from 0 to 0.8.
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Table 3 Temperature (α) variation on plate vs vibrational frequency (λ) for θ = 300 and a/b = 1.5

α m = β = 0 m = β = 0.4 m = β = 0.8
λ1 λ2 λ1 λ2 λ1 λ2

0.0 78.77 313.60 83.45 330.03 88.52 347.67
0.2 76.82 305.86 81.46 322.12 86.48 339.57
0.4 74.82 297.92 79.42 314.00 84.40 331.28
0.6 72.76 289.76 77.32 305.68 82.26 322.77
0.8 70.64 281.36 75.17 297.11 80.07 314.03

Table 4 Skew angle (θ) variation vs vibrational frequency (λ) for α = β = 0.4 and a/b = 1.5

θ m = 0 m = 0.4 m= 0.8
λ1 λ2 λ1 λ2 λ1 λ2

0 58.48 233.45 58.04 231.56 57.66 229.92
15 63.15 251.42 62.66 249.39 62.25 247.62
30 80.06 316.59 79.42 314.00 78.87 311.76
45 123.03 482.47 122.02 478.49 121.15 475.03
60 251.79 979.83 249.63 971.65 247.77 964.55
75 954.86 3696.81 946.47 3665.73 939.28 3638.74

Table 5 Comparison of frequency modes of present paper with [10] and [11] corresponding to
taper constant for θ = 300 and a/b = 1.5

β m = α = 0 m = 0, α = 0.2 m = 0.2, α = 0
λ1 λ2 λ1 λ2 λ1 λ2

0.0
from [10]
from [11]

78.77
{84.61}
{84.61}

313.60
{329.83}
{329.83}

76.82
{82.53}
{82.53}

305.86
{321.78}
{321.78}

78.47
{89.18}
{89.18}

312.39
{347.67}
{347.67}

0.2
from [10]
from [11]

81.38
{93.86}
{96.01}

322.95
{365.64}
{375.28}

79.41
{91.66}
{93.75}

315.11
{357.06}
{366.43}

81.06
{98.99}
{101.25}

321.66
{385.82}
{395.95}

0.4
from [10]
from [11]

84.11
{104.90}
{107.77}

322.70
{407.83}
{421.95}

82.11
{102.56}
{105.31}

324.74
{398.62}
{412.26}

83.77
{110.68}
{113.69}

331.32
{430.79}
{445.54}

0.6
from [10]
from [11]

86.95
{118.07}
{119.76}

342.82
{457.66}
{469.45}

84.92
{115.58}
{117.10}

334.75
{447.81}
{458.89}

86.58
{124.65}
{126.39}

341.35
{483.92}
{496.00}

0.8
from [10]
from [11]

89.88
{133.79}
{131.91}

353.28
{516.63}
{517.55}

87.82
{131.11}
{129.06}

345.09
{506.04}
{506.10}

89.50
{141.31}
{139.26}

351.72
{546.84}
{547.10}

1.0
from [10]
from [11]

92.90
{152.53}
{144.22}

364.07
{586.57}
{566.09}

90.81
{149.62}
{141.13}

355.76
{575.16}
{553.72}

92.50
{161.18}
{152.27}

362.41
{621.52}
{598.66}
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When we move to Tab. 4, it gives frequency modes corresponding to skew
angle for fixed value of aspect ratio a/b = 1.5, thermal gradient and tapering pa-
rameter i.e., α = β = 0.4 and variable value of non homogeneity constant i.e.,
m = 0, 0.4, 0.8. From Tab. 4, we can get that frequency mode increases rapidly
(there is sharp increment after θ = 450) for all the three variable values of non
homogeneity. When non homogeneity in the plate’s material increases from 0 to
0.8, frequency decreases with less rate of decrement (because of circular variation).

5. Comparison of result

The results of the present paper is compared with [10] and [11] with the help of table.
Table 5 gives the comparison of frequency modes with [10] and [11] corresponding
to tapering parameter for three different values of non homogeneity constant and
thermal gradient i.e., m = α = 0, m = 0, α = 0.2 and m = 0.2, α = 0. From
Tab. 5, author conclude that frequency for both modes is less when compared to
[10] and [11] for all the three above mentioned values of non homogeneity constant
and thermal gradient. The frequency variation is also less when compared to [10]
and [11].

6. Conclusion

From the above result discussion and comparison, author concludes that the fre-
quency modes behave according to plate’s parameter variation. The frequency
modes and variation in frequency modes in case of circular variation (present paper)
is less when compared to exponential variation (as in [10]) and sinusoidal variation
(as in [11]) as shown in table 5. The variation in frequency modes is very less due
to circular variation in Poisson’s ratio as non homogeneity effect when compared to
linear, parabolic and exponential variation in density or Poisson’s ratio. Therefore,
frequency can be optimize by taking appropriate variation in plate’s parameters.
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Nomenclature
a – Length of the plate
b – Breadth of the plate
x, y – Coordinates in the plane of plate
ζ, ψ – Skew coordinates of the plate
Y – Young’s modulus
ν – Poisson’s ratio
D̃ – Visco elastic operator
D1 – Flexural rigidity
ρ – Mass density per unit volume of the plate material
t – Time
ϕ (x, y, t) – Deflection of plate
Φ (x, y) – Deflection function
T (t) – Time function
g – Thickness of plate
β – Tapering parameter
m – Non homogeneity of the material
α – Temperature gradient
k2 – Constant


